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Abstract. The effect of parathyroid hormone (PTH) in 
vivo after secretion by the parathyroid gland is medi- 
ated by bioactive fragments of the molecule. To eluci- 
date their possible role in the regulation of cartilage 
matrix metabolism, the influence of the amino-terminal 
(NH2-terminal), the central, and the carboxyl-terminal 
(COOH-terminal) portion of the PTH on collagen gene 
expression was studied in a serum free cell culture sys- 
tem of fetal bovine and human chondrocytes. Expres- 
sion of a l  (I), oil (II), a l  (III), and otl (X) mRNA was 
investigated by in situ hybridization and quantified by 
Northern blot analysis. NH2-terminal and mid-regional 
fragments containing a core sequence between amino 
acid residues 28-34 of PTH induced a significant rise in 

etl (II) mRNA in proliferating chondrocytes. In addi- 
tion, the COOH-terminal portion (aa 52-84) of the 
PTH molecule was shown to exert a stimulatory effect 
on etl(II) and etl (X) mRNA expression in chondro- 
cytes from the hypertrophic zone of bovine epiphyseal 
cartilage. PTH peptides harboring either the functional 
domain in the central or COOH-terminal region of 
PTH can induce cAMP independent Ca 2+ signaling in 
different subsets of chondrocytes as assessed by micro- 
fluorometry of Fura-2/AM loaded cells. These results 
support the hypothesis that different hormonal effects 
of PTH on cartilage matrix metabolism are exerted by 
distinct effector domains and depend on the differenti- 
ation stage of the target cell. 

p ARATHYROID hormone plays a predominant role in 
the regulation of calcium homeostasis by acting 
mainly on its target tissues in the renal cortex and 

bone (15, 42). Soon after secretion the parathyroid hor- 
mone (PTH) I molecule undergoes rapid proteolysis in the 
liver resulting in multiple fragments (7). Since most of the 
calcium regulatory functions could be mapped to the NH2- 
terminal portion (PTH 1- 34) of PTH, it was thought that 
this fragment contains all structural requirements for bio- 
logical activity of the entire molecule (43, 52). The other 
fragments were regarded as inactive metabolites whose 
functional importance was confined to processing and in- 
tracellular transport events during hormone secretion by 
the cells of the parathyroid gland (PTH 53-84, references 
35, 46). However, there is now increasing evidence for a 
broader spectrum of target tissues, including cartilage (26, 
33, 34), and of hormone action in growth (30, 48) and dif- 
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ferentiation processes (8, 13) which are mediated by addi- 
tional functional domains on the mid-regional (23) and 
COOH-terminal portion (39, 40, 44) of PTH. For example, 
PTH (53-84) increases alkaline phosphatase activity in os- 
teoblastic cell lines (39) and more recent studies showed 
that PTH (39-84) and PTH (53-84) dose dependently 
stimulate the differentiation of osteoclast precursors into 
osteoclast-like cells (25). Moreover, for two domains of 
PTH their functional role in the induction of second mes- 
senger pathways has been elucidated: the first two NH2- 
terminal amino acids of PTH are needed for adenylate 
cyclase stimulation via the "classical" PTH receptor (24, 
43, 52), whereas the mid-regional part, aa 28-34, is respon- 
sible for induction of protein kinase C activation in target 
cells (23). This domain in the central part of PTH also 
seems to be critical for the mitogenic effect of the frag- 
ments PTH (28-48) and (1-34) in primary cultures of ster- 
nal embryonic chicken chondrocytes (48). A more com- 
plex pattern of PTH effects has been demonstrated in a 
culture system of neonatal murine mandibular condylar 
explants exposed simultaneously to PTH fragments 1-34, 
28-48, and 53-84 (51). Each of these fragments was shown 
to exert distinct biological effects (51) on the cartilage 
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morphology, indicating a potential critical role for PTH in 
normal endochondral ossification. 

In contrast to these well characterized PTH effects on 
cell numbers, cell shape and extracellular matrix morphol- 
ogy, little is known about the ability of the different PTH 
fragments to induce quantitative and/or qualitative changes 
in collagen gene expression by chondrocytes. Therefore, it 
was the aim of this study to elucidate the regulatory poten- 
tial of different PTH fragments on collagen metabolism of 
chondrocytes, which might be a critical underlying mecha- 
nism of PTH action on cartilage. 

Several studies (8, 13, 30) have indicated that the re- 
sponse of chondrocytes to PTH depends on the source and 
developmental stage of the cartilage. In embryonic tran- 
sient cartilage, such as epiphyseal cartilage of long bone 
rudiments, chondrocytes rapidly proliferate and undergo a 
series of differentiation steps. These stages of chondrocyte 
differentiation are aligned sequentially from the epiphy- 
seal surface down to the growth zone in the diaphysis and 
are characterized by the expression of different collagen 
types as specific markers (for review see reference 55). 
Preembryonic cells in the superficial layer express col- 
lagen type I, proliferating chondrocytes in the middle zone 
synthesize collagen II, VI, IX, and XI, whereas hyper- 
trophic chondrocytes of the growth plate can be unequivo- 
cally identified on the basis of their collagen type X ex- 
pression (16, 49). The expression of this characteristic 
collagen in the deep zone of the epiphysis seems to be 
functionally related to endochondral ossification processes 
(16, 49) in the matrix preceeding cartilage resorption by 
osteoclasts and replacement by endochondral bone. Since 
PTH is known to promote endochondral ossification (50), 
it was the aim of our study to investigate modulatory ef- 
fects of PTH fragments on the expression of collagen II 
and X mRNA in epiphyseal chondrocytes of different de- 
velopmental stages. 

Materials and Methods 

Chemicals and Supplies 
Bovine (b) and human (h) PTH fragments were obtained from Sigma (St. 
Louis, MO): h, b(PTH) bPTH (1-34), (Nle S,lS,Tyr 34) bPTH (3-34), hPTH 
(13-34), hPTH (28-48), h F r H  (39-68), (Tyr 52, Asn 76) hPTH (52-84), and 
hPTH (64-84). Tissue culture supplies were purchased from Becton Dick- 
inson (NJ), and FCS from PAA-Labor, Forschungs GmbH (Linz, Austria). 

Agarose Cell Culture 
Juvenile human costal cartilage obtained from funnel chest operations 
was dissected free of surrounding tissues and cut into 0.5-mm slices. Chon- 
drocytes were released by collagenase digestion and cultured in agarose 
gels under serum-free conditions as described previously (6, 53). Briefly, 
matrix-free cells suspended in media containing 0.5% of low melting aga- 
rose were seeded into prewarmed culture dishes coated with 1% high 
melting agarose gels. The cultures were maintained at 37°C to keep the 
low melting agarose in the liquid state and, thus, to allow the cells to sedi- 
ment at the interface of the two agarose layers. Thereafter, the low melt- 
ing agarose was allowed to gel by brief exposure of the cultures to 4°C. 
Cultures were then supplemented with additional medium. Cells were 
grown at densities of 2 × 106/ml in DMEM (Grand Island Biologicals 
Corp., Basel, Switzerland) containing 60 ixg/ml of 13-aminoproprionitrile 
fumarate, 50 ixg/ml sodium ascorbate, 1 mM cysteine, 1 mM pyruvate, 100 
U/ml penicillin, and 100 ixg/ml streptomycin. Where applicable, PTH frag- 
ments were added for 24 h. Subsequently, the media were exchanged and 
the cultures were maintained for another 48 h in the presence of 1 ~Ci 

[14C]proline (uniformly labeled, 285 mCi/mmol, Amersham International) 
and analyzed for collagen synthesis. 

Synthesis of Collagen H and X 

The radiolabeled agarose cultures were homogenized and newly synthe- 
sized collagens extracted by digestion with pepsin (6). The total extracted 
proteins were precipitated with ethanol and analyzed by SDS-PAGE 
(4.5-15% gradient gel) followed by fluorography. All samples corre- 
sponded to the same cell number (1.5 × 106 cells). Alternatively, collagen 
chains separated by SDS-PAGE were subjected to immunoblotting with a 
polyclonal rabbit antibody, which specifically recognizes human collagen 
type X (56) and a chemoluminescence detection system (ECL, Amersham 
International). Duplicates were performed using cells of the same prepa- 
ration, cultured and analyzed under identical conditions. 

Monolayer Cell Culture Conditions 
Bovine fetal cartilage (vertex-breech length of the fetuses: ~40-50 cm cor- 
responding to a developmental stage of the second trimester of gestation) 
was prepared from femoral heads, condyli, and tibial plateaus. A few sam- 
ples of human fetal epiphyseal cartilage (femur, tibia plateau) were ob- 
tained from the Pathology Department of the University of Erlangen- 
Ntirnberg (Erlangen-N0rnberg, Germany). For preparation of chondro- 
cytes, the epiphyseal growth plates were cleaned of perichondrium and 
dissected from the bony diaphysis, carefully avoiding any loss of cartilage. 
Subsequently, a 1-2-ram thick layer containing the hypertrophic zone was 
separated from the rest of the epiphysis by a transverse cut. After dissec- 
tion each fragment was further processed separately for the isolation of 
distinct chondrocyte populations representing the phenotype of the hy- 
pertrophic and proliferating zones of cartilage. 

The tissues slices were minced and treated with 0.1% (wt/vol) Pronase 
(Boehringer Mannheim, Mannheim, Germany) in PBS (137 mM NaCI, 
2.7 mM KCI, 10 mM phosphate and finally treated with 0.1% (wt/vol) 
Clostridial Collagenase P (Boehringer, Mannheim) in Ham's F-12 me- 
dium at 37°C for 4-6 h. The tissue fragments were disintegrated mechani- 
cally by repeated aspiration with a pipette, and matrix-free cells were 
passed through three layers of 100 Ixm pore-size Nylon tissue, recentri- 
fuged, and suspended in an appropriate volume of Ham's F-12 medium. 
Viability, determined by the trypan blue exclusion technique, always ex- 
ceeded 90%. 

All cell culture experiments were performed under strict serum-free 
conditions without any undefined additives or substitutes for serum com- 
ponents in Ham's F-12 medium, containing 1 mg/ml pyruvate as an antiox- 
idant (53) and 50 mg/ml ascorbate. The primary cultures of chondrocytes 
were plated at high densities (1.3-1.9 × 105 cells/cm 2) to keep them in 
their original differentiated phenotype. After the isolation procedure 
from the cartilage tissue, the cells were given 6 h to recover from the enzy- 
matic treatment before the stimulation experiments with the different 
PTH fragments were performed. 

For in situ hybridization studies of collagen gene expression primary 
chondrocytes were cultured on tissue culture chamber slides (Nunc Inc., 
Naperville, IL) at a cell density of 20,000 cells/chamber (8 chambers/slide). 

RNA Probes 
The specific RNA probes for detection of collagen chains etl (I), ctl(II), 
al(III), and al (X) are described in detail in Aigner et al. (2) and Reichen- 
berger et al. (45). Briefly, the pHCG IN clone contains a 207-bp fragment 
of the N-propeptide region of human cd(I) and pH CG2 is a 435-bp frag- 
ment from the 3'untranslated region of human ctl(II). The insert of pH- 
CG3 is a 294-bp fragment from the C-propeptide domain of human 
al(III). The pERX fragment (292 bp) codes for a part of the COOH ter- 
minal, nontriple helical domain (NC1) of human collagen type X (45). pRNA 
1 contains a Xbal-BamHI fragment (294 bp) of mouse 18S ribosomal 
RNA (rRNA) from pCM 1 (17) recloned in XbaI-BamI sites of pGEM 
3Z. This probe exhibits 100% homology to human 18S rRNA and was 
used as a positive control and for standardization purposes. The riboprobe 
for human -/-actin was pHF~/A1 (14). 

In Situ Hybridization 
All specific cDNA probes for ctl(1), ctl(II), ~tl(III), and cd(X), 18S rRNA 
used in the experiments were cloned into pGEM transcription vectors 
(Promega Corp., Madison, WI) (2). The constructs were linearized and 
transcribed in vitro with T7 and SP6 RNA-polymerase (Promega, Madi- 
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son), to generate anti-sense and sense transcripts, respectively. The probes 
were labeled with 60-150 I~Ci(a-35S)-UTP (1.200 Ci/mmol, New England 
Nuclear, Dreieich, Germany). The quality of the transcripts was con- 
trolled using denaturing formaldehyde agarose and polyacrylamide gels. 

In situ hybridization was performed according to Aigner et al. (2) with 
slight modifications. Briefly, the cultured chondrocytes were fixed on tis- 
sue chamber slides in 4% paraformaldehyde in PBS for 4 min at room 
temperature, dipped in dH20 and stored in ethanol until use. Cells were 
rehydrated, treated with proteinase K (20 Ixg/ml for 7 min), postfixed, and 
acetylated in 0.25% acetic anhydride. The subsequent hybridization was 
performed with riboprobes at a final activity of 3--6 × 107 cprn/ml, depend- 
ing on their length, for 12-16 h at 43°C. After hybridization the specimens 
were washed in 2 × SSC/0.5% 13-mercaptoethanol and 0.5 × SSC/0.5% 
13-mercaptoethanol at 40°C and treated with RNAses A (20 Ixg/ml) and T1 
(50 U/ml). This treatment was followed by two washes in 2 × SSC/50% 
formamide/0.5% 13-mercaptoethanol at 45°C and three washes in 0.1 × 
SSC at room temperature. Subsequently, the slides were dehydrated and 
autoradiographed using Kodak NTB-2 Nuclear Track Emulsion (Eastman 
Kodak Rochester, NY). After a 3-4 d exposure, the slides were developed 
(Dektol, Eastman Kodak), fixed (Unifix, Kodak), and counterstained in 
5% Giemsa. The results were evaluated by dark- and bright-field micros- 
copy (Zeiss). 

Northern Blot 
Chondrocytes were lysed in 4 M guanidinium thiocyanate, 25 mM Na-citrate, 
0.5% Na-sarcosyl, and 0.7% 13-mercaptoethanol. RNA was extracted us- 
ing the cesium-chloride density centrifugation method of Chirgwin et al. 
(9). Total RNA (10 p.g) was subjected to formaldehyde gel electrophore- 
sis, blotted onto nylon filters and cross-linked by exposure to UV light for 
5 rain. For analysis of RNA, cDNA probes were labeled with [32p]dATP 
or dCTP by random priming and hybridized in 50% formamide, 5;,< SSC. 
5× Dehnhardt's solution (4), 0.5% SDS, and 100 Izg/ml herring sperm 
DNA at 42°C for 16 h. After hybridization, filters were washed twice in 
2× SSC at room temperature for 5 rain, twice in 2× SSC/0.1% SDS each 
at 50°C for 30 rain, and once in 0.1× SSC/0.1% SDS at room temperature 
for 2 min. The washed filters were exposed to Kodak X-OMAT T M  X-ray 
films (Eastman Kodak). 

Microfluorometry of Ca 2+-Signaling 
For Ca 2+ imaging, chondrocytes were seeded on 35-mm tissue culture 
dishes and incubated in Ham F-12 for 24 h before loading with Fura-2/AM 
(5 I~M) for 30 min at 37°C. Ca 2+ was imaged with an upright microscope 
(Zeiss Axioskop FS, Jena, Germany) and a 40× water immersion objec- 
tive. A CCD camera system (Photometrics Ltd., Tuscon AZ) (12, 37, 38) 
was used to acquire digitized images of Fura-2 fluorescence. Free Ca 2+ 
concentrations were determined from background corrected image pairs 
at 350 and 380 nm excitation with the ratio method (18). The responsive- 
ness of the calcium signaling machinery of the chondrocyte population 
was controlled by the Ca 2+ response to 5 I-d FCS. Subsequently, the return 
of intracellular free Ca ~+ to stable baseline levels was recorded for at least 
10 min before the application of PTH fragments. Cells were continuously 
superfused with saline containing NaC1 140 raM, KCl 5 mM, MgSO4 2 raM, 
NaHzPO4 1 mM, glucose 5.5 mM, Hepes 20 mM, pH 7.4. The PTH pep- 
tides were applied by microdrop application of concentrated stock solu- 
tion into the bath to give final concentrations as indicated. When different 
PTH fragments were sequentially tested on the same chondrocyte popula- 
tion, a return to baseline Ca 2+ fluorescence and stability for 10 rain was 
imperative before application of a new peptide. 

Results 

Stimulation of Collagen Types H and X Protein 
Synthesis by Human Costal Chondrocytes 

A mixture of resting, proliferative, and hypertrophic hu- 
man costal chondrocytes was cultured in agarose gels un- 
der serum-free conditions (53). To investigate the effect of 
PTH fragments from the amino-terminal (PTH (1-34))- 
and the carboxyl-terminal (PTH (52-84)) end of the hor- 
mone on collagen biosynthesis, the cultures (cell density: 
2 × 106/ml) were exposed to the PTH peptides at 10 -s M 

for 24 h. Subsequently, the cultures were labeled with ra- 
dioactive proline for 48 h. Pepsin-treated collagens from 
the culture dishes were isolated and analyzed by SDS- 
PAGE and fluorography. In comparison to the serum-free 
control (Fig. 1 a, lane a), biosynthesis of collagen II was 
enhanced under the influence of the NHz- and COOH-ter- 
minal PTH fragments (Fig la, lanes b and c). Collagen X 
was not detectable by fluorography due to the low ratio of 
type X to type II collagen in the mixed chondrocyte popu- 
lation, but was evident after a longer exposure of the gel 
(not shown). The synthesized type X collagen was ana- 
lyzed by immunoblotting of the same sample with a type X 
collagen-specific antibody. As shown in Fig. 1 b, collagen X 
synthesis was not detectable in controls (lane a), but was 
prominent after stimulation with either PTH (1-34) (lane b) 
or PTH (52-84) (lane c). Thus, these experiments demon- 
strate a stimulatory effect of PTH peptides on the synthe- 
sis of collagens II and X by human postnatal chondrocytes 
under serum-free cell culture conditions. 

Since human costal chondrocytes represented a mixture 
of resting, proliferative, and hypertrophic chondrocytes, 

Figure 1. Stimulat ion of  collagen types  II and  X pro te in  synthesis  
in pos tna ta l  h u m a n  costal chondrocy tes  in agarose  cul ture by 
P T H  fragments .  (a) Col lagen type  II synthesis  de t e rmined  by in- 
corpora t ion  of  [14C]proline: Cul tures  were  es tabl ished unde r  se- 
r u m - f r e e  condi t ions  at a densi ty  of  2 × 106 cells/ml in 0.75 ml of  
agarose gels, cul tured and labeled with [14C]proline for 48 h. The  
med i um ( D M E M )  was supp l emen ted  with FI'I-I (1-34) ( lane b) or  
P T H  (52-84) ( lane c) to a final concent ra t ion  of  10-SM. Collagens 
f rom agarose and med i um were  peps in  t rea ted  and analyzed by 
S D S - P A G E  (4.5-15% gradient  gel) and f luorography.  The  PTH-  
free med i um contro l  is shown in lane a. A t  the  shor t  exposure  
t ime (2 d) only the  domina t ing  a l ( I I ) - b a n d  is visible (arrowhead: 
a l ( I I ) . )  (b) Col lagen type X synthesis  de t e rmined  by immuno-  
blot t ing with a collagen X specific rabbi t  ant iserum: In  parallel,  
chondrocy tes  f rom the  same prepara t ion  were  cul tured unde r  
condi t ions  identical  to those  descr ibed in a but  wi thout  [14C]pro- 
line labeling. Peps in ized  collagens were  harves ted  and electro-  
phoret ical ly  separa ted  as in Fig. 1 a, b lo t ted  to a ni t rocel lulose fil- 
ter  and s ta ined with a specific rabbi t  ant i-col lagen x: lane  a is the  
med i um control;  lane b: P T H  (1-34); and lane c: P T H  (52-84) (ar- 
rowhead: cd (X).)  
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Figure 2. Characterization of the dif- 
ferentiation stage of the chondro- 
cytes. (a) Phase contrast microscopy 
of the chondrocyte preparations from 
bovine fetal epiphyseal cartilage rep- 
resenting the population from the hy- 
pertrophic zone (a) and the resting 
and proliferating zone (b). (b) North- 
ern blot analysis. RNA was extracted 
from the hypertrophic chondrocytes 
of the growth plate (a) and proliferat- 
ing chondrocytes (b) freshly isolated 
under serum-free conditions. Equal 
amounts of total RNA (10 ~g) were 
applied to each lane. The blot was hy- 
bridized sequentially with the human 
riboprobes for collagen type II, type 
X, type I, and y-actin. A strong band 
for collagen type II (exposure: 1 d) 
and ~-actin (exposure: 2 d) is visible 
(lanes a and b). After 3 d of exposure 
a 3.0-kB band of type X collagen ap- 
peared in lane a. No mRNA is detect- 
able for type X collagen in lane b, 
and for type I collagen in both lanes, 
even after 7 d exposure. Bar, (a in 
panel b) 33 p~m. 

we de te rmined  the differential  effect of the N H  2- and 
COOH- te rmina l  PTH fragments  on prol iferat ing vs hy- 
per t rophic  chondrocytes.  Subsequent  studies were per-  
formed on separa te  prepara t ions  of chondrocytes  from the 

resting zone and a popula t ion  enriched in hyper t rophic  
chondrocytes ,  isolated from bovine cartilage. Feta l  bovine 
chondrocytes  were chosen because of  their  availabili ty and 
their  physiological  similari ty to human chondrocytes.  
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Phenotypic Characterization of  the Chondrocyte 
Populations from the Proliferative and Hypertrophic 
Zone of  Fetal Bovine Epiphyseal Cartilage 

Care was taken to separate proliferating from hyper- 
trophic chondrocytes during the isolation of the cells from 
fetal bovine epiphyseal cartilage. This procedure resulted 
in two distinct chondrocyte populations. Their phenotypic 
characterization 24 h after preparation from cartilage is 
shown in Fig. 2. The cell population from the hypertrophic 
zone of cartilage was enriched in enlarged cells (Fig. 2 a); 
Northern blotting revealed expression of type II as well as 
type X collagen mRNA (Fig. 2 b) at a mean ratio of 8:1 
(variation between 5:1 and 14:1) as assessed by densito- 
metric analysis in four independent preparations. In con- 
trast, no expression of collagen type X was detectable in 

the cell population prepared from the resting zone of epi- 
physeal cartilage. A significant contamination of the pri- 
mary cultures with fibroblasts or dedifferentiated chon- 
drocytes was excluded, since Northern blot analysis for 
collagen type I expression remained negative immediately 
after the cell preparation procedure from the tissue (Fig. 2 b) 
and throughout the subsequent culture period. 

In Situ Hybridization on Monolayeral Cultures of  
PTH-stimulated Fetal Chondrocytes from the 
Proliferative Zone of the Epiphysis 

Monolayer cultures of freshly isolated fetal human and 
bovine chondrocytes from the proliferating zones of the 
epiphysis were incubated with varying concentrations 
(10-6-10 -11 M) of PTH (1-34) and PTH (28-48) under 

Figure 3. In situ hybridization with a ribo- 
probe specific for al(II) mRNA. Primary 
monolayer cultures of human fetal epiphy- 
seal chondrocytes were incubated for 24 h 
in (a) 10 -8 M PTH (1-34), (b) Ham's F-12 
medium (c) medium supplemented with 
10% FCS, and (d) 10 -8 M PTH (28-48) 
(dark field). At a higher magnification and 
by comparison with the bright field (e), 
the heterogeneity of collagen type II ex- 
pression in the cell population is visible 
and indicated by the arrows. Bars: (c) 66 
txm; (e) 26 Ixm. 
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strict serum-free conditions on tissue chamber slides for 24 h. 
Subsequently, in situ hybridizations were per formed on 
the specimens using R N A  probes  for a l ( I ) ,  ed( I I )  and 
a l ( I I I )  m R N A  to analyze the P T H  effect on collagen gene 
expression. The use of chamber  slides allowed for analysis 
of control cells after incubation in serum-free H a m ' s  F-12 
medium alone, or in medium supplemented with 10% FCS 
in different chambers  on the same slide. 

Both P T H  (1-34) and P T H  (28-48) stimulated etl (II)  ex- 
pression in the chondrocytes at concentrations between 
10-6-10 -1° M. At  a concentrat ion of 10 -8 M the effect of 
the P T H  fragments on collagen II  expression reached an 
opt imum, which was quantitatively comparable  to the 
stimulation obtained by FCS. 

The results were evaluated semiquantitatively in repre- 
sentative areas by counting cells with unequivocal positive 
signals and by counting grains per  cell. Representat ive ar- 
eas of human monolayer  cultures after 24 h exposure to 
medium alone, P T H  (1-34) (10-8M), P T H  (28-48) (10-8M), 
or FCS are shown in Fig. 3. A stimulatory effect was ob- 
tained by evaluation of at least three parallel experiments  
in three independent  chondrocyte preparat ions f rom dif- 
ferent sources. This effect was specific for collagen type II, 
as no inductive effect on etl (I) or etl ( I I I )  gene expression 
in the chondrocytes was detectable (data not shown). 
These results were reproducible in four independent  ex- 
per iments  with bovine fetal chondrocytes.  However ,  Fig. 3 
also demonstrates  the heterogenei ty of  the response in 
these pr imary cultures of fetal chondrocytes.  A precise 
quantitative analysis of the in situ hybridization experi- 
ments  was not possible. It  was therefore necessary to con- 
firm these observations by Nor thern  blot analysis. 

Northern Blot Analysis of PTH-stimulated 
Proliferating Chondrocytes 

Quanti tat ive analysis of ed( I I )  expression in proliferating 
bovine fetal  chondrocytes  was done by Nor thern  blot. 
Fig. 4 a shows etl(II)  signals after incubation of the cells 
with P T H  (1-34) and P T H  (28-48) at concentrations of 1 
and 10 nM, respectively, for 24 h. Both fragments exhib- 
ited specific st imulatory effects on collagen type II  m R N A  
levels without affecting the expression of ctl (I), ed(I I I ) ,  or 
etl (X). This st imulatory effect was more  pronounced at an 
effector concentrat ion of 10 nM. 

Since both P T H  peptides were active, we questioned 
whether  the effect was media ted  by different functional 
domains on each f ragment  or rather  by a common  effector 
site located in the overlap region (aa 28 - 34) of their se- 
quences. As the NH2-terminal two amino acid residues of 
P T H  are essential for the activation of adenylate cyclase 
(43, 52), we per formed an inhibition experiment  with a 
known receptor  compet i tor  for P T H  (1-34) lacking the 
critical functional domain for cAMP induction at its NHz 
terminus. The  result of this inhibition exper iment  is shown 
in Fig. 4 b. Even in a 1,000-fold molar  excess,the inhibitor 
failed to exert  any effect on the stimulation of a l ( I I )  ex- 
pression by P T H  (1-34), indicating that the functional do- 
main is not located at the NH2 terminus and that  cAMP in- 
duction is not critically involved as a second messenger.  

In contrast, the compet i tor  f ragment  P T H  (3-34) stimu- 
lated etl(II)  expression in chondrocytes.  To  map  the effec- 

Figure 4. Northern blot analysis of a l ( I I )  expression in bovine 
fetal chondrocytes. Fetal bovine proliferating chondrocytes in 
monolayer culture were stimulated with different PTH fragments 
under serum-free conditions for 24 h. Each lane was loaded with 
10 ~g of total RNA. The blot was hybridized sequentially with 
the human riboprobe for collagen type II and ~/-actin. (a) Stimu- 
latory effect of PTH (1-34) and F r H  (28-48) on etl(II) mRNA 
expression: the chondrocytes were incubated with PTH (1-34) 
and F r H  (28-48) at a concentration of 10 -8 M and at 10 -9  M, re- 
spectively, cont., medium control. (b) Inhibition experiment of 
the stimulatory effect of PTH (1-34) by a receptor antagonistic 
peptide (PTH (3-34)) for cAMP dependent responses: Chondro- 
cytes in monolayer culture were stimulated with PTH (1-34) at a 
concentration of 10  -9  M as in 4 a, but in the presence of the an- 
tagonist PTH (3-34) at a concentration of 10 -6 M (lane 3). Lane 1 
is the medium control and lane 2 the stimulation of a l  (II) 
mRNA by PTH (1-34) alone. Lane 4 shows the result of the con- 
trol for an agonistic activity of PTH (3-34) alone (concentration: 
10 -8 M). No inhibition by the receptor competitor PTH (3-34) is 
detectable. (c) Stimulatory effect of different PTH peptides on 
etl(II) mRNA expression. Medium control is shown in lane 1 
(cont.). All fragments were tested at a concentration of 10 -8 M: 
PTH (1-34) (lane 2), PTH (13-34) (lane 3), PTH (39-68) (lane 4), 
and PTH (64-84) (lane 5). 
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tor domain on the PTH fragments more precisely, addi- 
tional peptides were tested for their stimulatory potential 
on collagen type II expression (Fig. 4 c). PTH fragments 
covering the COOH-terminus of the hormone PTH (39- 
68), PTH (52-84) (result not shown), and PTH (64-84) 
were inactive, whereas PTH (13-34) was proven to harbor 
the effector domain. 

Densitometric evaluation of a series of stimulation ex- 
periments with the different PTH fragments revealed that 
the agonistic peptides of the central portion of PTH in- 
duced an approximately fivefold increase in etl(II) expres- 
sion over base line levels of the medium controls (Fig. 5 a). 

In Fig. 5 b an alignment of the different PTH peptides 
along the entire hormone sequence is shown together with 
a summary of their effects on collagen type II expression 

Figure 5. (a) Densitometric analysis of Northern blots from inde- 
pendent stimulation experiments (n) of proliferating bovine 
chondrocytes with the different PTH fragments (concentration 
10 -8 M): PTH (1-34), PTH (3-34), PTH (13-34), PTH (28-48), 
PTH (39-68), and trt'H (64-84). The columns represent the stimu- 
lation indices for ¢tl (II) mRNA levels, which were determined 
after normalization with ~,-actin mRNA and al  (II) mRNA of 
unstimulated controls. Error bars represent standard deviation. 
(b) Summary of the effects of different PTH peptides on al(II) 
expression in young proliferating chondrocytes. The hatched 
area, corresponding to amino acid residues 28-34 of the PTH 
molecule, indicates a functional domain which is present in the 
sequences of all agonistic fragments (bold) and is absent from the 
inactive peptides. (# = PTH fragment.) 

in proliferating bovine fetal chondrocytes. All functionally 
active fragments overlap in the central region spanning aa 
residues 28-34, which is not present in the inactive frag- 
ments from the COOH-terminal portion of PTH. There- 
fore, this domain seems to be essential for the stimulation 
of ed(II) expression. 

PTH Effects on Chondrocyte Cultures Established from 
Hypertrophic Cartilage 

Based on the results of effector domain mapping in exper- 
iments with proliferating chondrocytes, PTH (1-34) was 
chosen as an appropriate fragment for analogous stimula- 
tion experiments in monolayer cultures of chondrocytes 
from the hypertrophic zone of fetal bovine cartilage, Also, 
in chondrocyte cultures enriched in hypertrophic cells, 
PTH (1-34) stimulated type II collagen expression at a 
concentration of 10 nM (Fig. 6, a and b). In addition, a 
stimulation of or(X) expression was seen, whereas the 
Northern blots remained negative with cd(I) and al(III )  
specific riboprobes (results not shown). Moreover, in con- 
trast to the results obtained with resting and proliferating 
chondrocytes, an additional stimulatory effect of the COOH- 
terminal part of PTH (PTH (52-84)) on type II and type X 
collagen gene expression was observed (Fig. 6, a and b). 
Densitometric evaluation of the Northern blots revealed a 
fivefold increase in t~l (II) or ctl (X) mRNA levels in 
chondrocytes from the hypertrophic zone in response to 
stimulation with either PTH (1-34) or PTH (52-84) (Fig. 6 b). 

As the chondrocyte preparations from the hypertrophic 
zone of cartilage were to some extent heterogeneous (Fig. 
2 a), the PTH stimulation experiments were repeated with 
a population of chondrocytes clearly dominated by cells of 
the characteristic hypertrophic phenotype (Fig. 7 a). The 
results from these experiments revealed a stimulatory ef- 
fect of F-FH (28-48) and confirmed the initial data on the 
effect of PTH (1-34) and PTH (52-84) on a l  (II) and 
ctl(X) mRNA expression (Fig. 7 b). 

These results demonstrate the importance of the COOH- 
terminal part of PTH for collagen mRNA expression in 
hypertrophic chondrocytes, in addition to the functional 
domain in the central region of the hormone, which also 
acts on proliferating chondrocytes. 

The responsiveness of the chondrocytes to the stimula- 
tory effects of trIT-t fragments on cd (II) and or(X) mRNA 
expression is not a transient phenomenon restricted to the 
6-h period which was usually given to the cells to recover 
from the enzyme treatment during the separation proce- 
dure from the tissue. The Northern blot in Fig. 8 shows 
that cells after 3 d culture in serum-free medium still re- 
sponded to PTH stimulation with an increase in or1 (II) 
mRNA. 

IntraceUular Free Ca z+ after Stimulation with Different 
PTH Peptides 

For the analysis of cAMP independent second messenger 
signals, monolayers of bovine chondrocytes from the hy- 
pertrophic zone were loaded with Fura-2/AM and stimu- 
lated with different PTH fragments. The FH-I peptides were 
selected on the basis of the Northern blot results according 
to their ability to exert a stimulatory effect on collagen 
gene expression. Therefore, PTH (1-34), PTH (28-48), and 
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Figure 6. (a) Northern blot analysis of cd(II) and a l (X)  expres- 
sion in chondrocytes from the growth plate of bovine fetal carti- 
lage. Monolayer cultures of hypertrophic chondrocytes were 
stimulated with the hormone fragments PTH (1-34) (lane b) and 
PTH (52-84) (lane c) under serum-free conditions for 24 h. Me- 
dium control is shown in lane a. Each lane was loaded with 10 Izg 
of total RNA. The blot was hybridized sequentially with ribo- 
probes for ~xl(X), etl(II), and -y-actin. (b) Densitometric analysis 
of independent stimulation experiments (n) of chondrocytes from 
the hypertrophic zone of bovine growth plate cartilage with PTH 
(1-34) and PTH (52-84). The columns represent the stimulation 
indices for a l  (II) and a l  (X) levels, which were determined by 
normalization with ~/-actin mRNA and a l  (II) or a l  (X) mRNA 
in unstimulated controls, respectively. Error bars represent stan- 
dard deviation. 

Figure 7. (a) Phase contrast microscopy of chondrocyte prepara- 
tions especially enriched in hypertrophic chondrocytes. (b) North- 
ern blot analysis of a l ( I I )  and a l (X)  expression in chondrocyte 
populations enriched in hypertrophic cells (a). Monolayer cul- 
tures were stimulated with the hormone fragments PTH (1-34) 
(lane b), PTH (28-48) (lane c), and PTH (52-84) (lane d) under 
serum-free conditions and with 10% FCS (lane e) for 24 h. Me- 
dium control is shown in lane a. Each lane was loaded with 10 Ixg 
of total RNA. The blot was hybridized sequentially with ribo- 
probes for ed(X), a l(II) ,  and ~/-actin. 

PTH (52-84) were further s tudied for their  ability to in- 
duce changes of intracellular  free Ca 2+ concentrat ions by 
rat io imaging of  up to 20 chondrocytes  s imultaneously in 
independen t  exper iments  from five different  prepara t ions  
of chondrocytes  (Table  I). Fo r  the investigation of Ca 2÷ 
signaling, pr imary  cultures of fetal chondrocytes  were 
used. In  a series of exper iments  the different  PTH pep- 
tides were appl ied sequential ly on the same chondrocyte  
populat ion.  Af te r  appl icat ion of one pept ide  a re turn  to 
stable intracel lular  basel ine calcium levels was recorded 
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the potential of all PTH peptides to induce increases in 
free Ca 2+ in the cells and a differential responsiveness of 
individual chondrocytes towards different PTH fragments. 

Figure 8. Northern blot analysis of etl(II) expression in chondro- 
cyte populations enriched in hypertrophic cells. The cells were 
kept for 3 d in serum-free Ham's F-12 medium after preparation 
from growth plate cartilage. Subsequently, the cells were stimu- 
lated for 24 h with PTH (1-34) (lane b), or PTH (52-84) (lane c), 
and medium control (lane a). 

for at least 10 min before a new PTH fragment was tested. 
All fragments were capable of inducing a transient in- 
crease of intracellular free calcium within 5 min of applica- 
tion of the stimulus (Fig. 9 and Table I). Normally, the 
Ca 2+ concentration returned to stable baseline levels (see 
controls in Fig. 9, a and b). In a few cells we observed sec- 
ondary and tertiary increases in intracellular Ca 2÷ at inter- 
vals of 2-5 min. Fig. 9 a shows that within one cell popula- 
tion some cells responded exclusively to PTH (1-34), while 
others responded only to PTH (52-84). Some cells exhib- 
ited a promiscuous calcium response and were sensitive to 
both fragments. This simultaneous responsiveness to PTH 
(1-34) and PTH (52-84) (Fig. 9 a) may differ from the cel- 
lular response of some chondrocytes to the PTH frag- 
ments 1-34 and 28-48 (Fig. 9 b) with regard to differential 
receptor involvement. Thus, the NH2-terminal PTH pep- 
tide does not exhibit any sequence overlap with PTH (52- 
84). In contrast, PTH (1-34) and PTH (28-48) share a con- 
served stretch of amino acids between aa 28-34 and may 
exert their effect on intracellular Ca z+ via this common 
functional domain. 

For comparison, a pure chondrocyte preparation from 
the zone of resting and proliferating cartilage was ana- 
lyzed with the result that only 3 out of 150 FCS-responsive 
ceils showed an increase in intracellular free Ca 2÷ in re- 
sponse to the COOH-terminal fragment (vs 35 out of 119 
in the chondrocyte population from the hypertrophic 
zone, Table I). However, the method selects for a subset of 
cells with the ability to firmly adhere to the bottom of the 
plastic dish in order to allow for Ca 2+ measurements under 
a continuous flow of medium. This explains why the cells 
in Fig. 9 differ in cell shape from those in Fig. 2. Therefore, 
the number of positive Ca 2÷ responses to different PTH 
stimuli does not necessarily represent the lYFH-sensitive 
cells in the total population of hypertrophic or proliferat- 
ing chondrocytes. However, the experiments demonstrate 

Discussion 

The results presented in this study show that different 
fragments of the PTH molecule stimulate collagen type II 
and X gene expression in chondrocytes under serum-free 
conditions. In initial experiments using postnatal human 
costal chondrocytes, PTH (1-34) and PTH (52-84) stimu- 
lated synthesis of collagen type II and X in a serum-free 
agarose culture system. Due to the restricted availability 
of appropriate amounts of human chondrocytes and the 
disadvantages of the agarose culture system for studies of 
gene expression at the mRNA level, further experimenta- 
tion was performed using a serum-free culture system of 
bovine growth plate chondrocytes, separated into cells 
from the resting and proliferating zone, and in cells from 
the hypertrophic zone. In agreement with the stimulation 
of collagen type II and X at the protein level, a rise in 
cd(II) and ~d(X) mRNA level was detected in response to 
different PTH petides. The results clearly show that the 
stimulatory PTH effect on collagen mRNA levels is de- 
pendent on the differentiation stage of the cells and in- 
duced by at least two different functional domains of PTH. 
The first domain is located in the central part of the PTH 
molecule between aa 28-34 and is capable of stimulating 
M(II)  expression in resting and proliferating fetal chon- 
drocytes. A second domain is located in the COOH-termi- 
nal part of PTH between aa 52-84. This domain is recog- 
nized only by cells which are differentiating towards the 
hypertrophic stage; it is not active on proliferating chon- 
drocytes. Fragments lacking the genuine NH2-terminus 
(aa residues 1-3) of the hormone, which is indispensible 
for activation of the PTH receptor associated adenylate 
cyclase (15, 43, 52) also stimulate type II collagen expres- 
sion. This indicates that cAMP does not play a critical role 
in the signaling pathway of PTH-mediated upregulation of 
type II collagen gene expression. 

All functionally active fragments are capable of induc- 
ing a rise in calcium concentration in the chondrocytes as 
shown in Fig. 9. Similarly, a cAMP independent Ca2+-sig - 
naling, involving protein kinase-C activation (57) has been 
demonstrated in other experimental systems of PTH ac- 
tion (48). The activation of this signal transfer cascade by 
PTH is dependent on a region (aa 28-34) in the central 
part of PTH (23). We mapped the functional domain for 
stimulation of collagen type II gene expression in prolifer- 
ating chondrocytes to the same region. It is, therefore, 
very likely that a Ca 2+ signal induced by the protein ki- 
nase-C domain of PTH (23) is also involved in the upregu- 
lation of ctl(II) expression in proliferating chondrocytes. 

In chick chondrocytes, it has been shown (48) that this 
central PTH domain mediates an EGTA-sensitive mito- 
genic effect on the cells. However, under the experimental 
conditions of this study which are high plating density of 
the cells (1.3-1.9 x 105/cm2), a 24 h period of hormone 
treatment, and strict serum-free conditions, no mitogenic 
effect was detectable for any PTH fragment. These culture 
conditions account for the absence of any proliferative re- 
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Figure 9. Ratio imaging of intracellular free calcium in bovine fetal chondrocytes as determined by Fura-2 fluorescence. Monolayer cul- 
tures of chondrocytes from the hypertrophic zone were stimulated by a bolus application (final concentration: 10-aM) of PTH (52-84) 
(A2 PTH5 and B6 PTH5), PTH (28-48) (A4 PTH2 and B2 PTH2), or PTH (1-34) (B4 PTH1). A shows representative ratio images ob- 
tained by a stimulation experiment with a sequential application of PTH peptides 52-84 and 28-48. A1 is the control image before stimu- 
lation with PTH (52-84). A3 shows the return to a stable baseline level and represents the control image preceding stimulation with PTH 
(28-48). B shows the images derived from a sequential stimulation experiment with three different PTH fragments: PTH (28-48) (B2 
PTH2), PTH (1-34) (B4 PTH1), and PTH (52-84) (B6 PTH5). B1 Cont is the control image before stimulation; B3 Cont and B5 Cont 
demonstrate the return to stable baseline after the preceeding stimulations with the respective PTH peptides. Bar, 20 i~m. 

sponse of the chondrocytes to PTH, which is in accordance 
with the observations made by Schliiter et al. (48) that 
high cell densities impede the mitogenic effect of PTH. 
Therefore, the same functional domain of PTH (amino 
acid residue 28-34) can exert quite different effects, either 
a mitogenic response or an increase in differentiated func- 
tion (a l ( I I )  expression), depending on the duration of the 
hormonal stimulus and the cell density. 

Table L Ca 2+ Response Frequency in Fetal Bovine 
Chondrocyte from the Hypertrophic Zone of the Epiphysis: 
Ratio Image Analysis 

PTH (1-34) PTH (28-48) PTH (52-84) FCS 

Responses  (n) 19 24 35 127 

Total  cells (n) 50 85 119 150 

Response  26.0 28.2 29.4 84.6 

f requency (%) 

Fura-2 loaded chondrocytes from the hypertrophic zone of cartilage were examined 
by microfluorometry. Changes of intracellular free Ca 2+ were determined in individ- 
ual ceils by ratio image analysis. A response was considered to have occured when at 
least an increase of 0.5 p.M from the baseline Ca 2÷ was recorded. The number (n) of 
responsive ceils upon stimulation by different PTH peptides and with FCS is shown. 
The response frequency was calculated from the ratio of responsive cells to total cells 
measured. 

These environmental influences are critical for PTH- 
mediated effects, hence differences in culture conditions 
may also account for some apparently controversial results 
found in the literature on the hormone action on collagen 
synthesis by chondrocytes (13, 21, 36, 41). In the study of 
Crabb et al. (13) articular chick chondrocytes remained to- 
tally unresponsive to PTH, whereas a mitogenic effect and 
inhibition of collagen synthesis was reported in growth 
plate chondrocytes. Similar inhibitory effects of PTH (1-34) 
and PTH (54-84) on collagen X synthesis by hypertrophic 
rabbit chondrocytes were recently reported by Iwamoto et 
al. (21). In a detailed analysis of PTH effects on long term 
cultures of maturing chick sternal and tibial growth plate 
chondrocytes, Iwamoto et al. (21) demonstrated that PTH 
has an inhibitory effect on the emergence of collagen X 
expressing cells and that this inhibitory effect persisted for 
the whole maturation pathway of the chondrocytes, which 
is in contrast to the more stage-specific effects of FGF-2 (22). 

However, these experiments were performed in long 
term cultures and in the presence of 5-10% FCS in the cul- 
ture medium, while all stimulatory effects of the PTH frag- 
ments on collagen gene expression reported here depend 
on strict serum-free conditions. We have shown that FCS 
dramatically enhances collagen gene expression within 24 h. 

The Journal of Cell Biology, Volume 135, 1996 1188 



As uncontrolled effects by endogenous growth factors in 
FCS cannot be excluded (10), serum was omitted from all 
stages of the experiments reported here. In agreement 
with Iwamoto et al. (21, 22) we found in our culture system 
that the stimulatory PTH (1-34) effect on collagen gene 
expression was not only abolished, but also reverted, when 
the chondrocytes were exposed to serum during collage- 
nase digestion before the PTH stimulus (Vornehm, S., 
manuscript in preparation). Reduced viability of the chon- 
drocytes prepared and cultured under serum-free condi- 
tions was excluded by the fact that freshly prepared cells 
showed strong signals for ed(II) mRNA and divided nor- 
mally. Since prolonged enzymatic digestion of cartilage in 
the absence of serum might cause cell damage, care was 
taken to reduce the time of enzyme treatment to a mini- 
mum. Properly treated chondrocytes remained viable and 
retained their FCS-responsiveness, as well as responsive- 
ness to PTH. This PTH response of freshly isolated cells 
remained stable for a culture period of at least 3 d under 
strict serum-free conditions, however, preference was given 
in this study to an immediate stimulation of the chondro- 
cytes already 6 h after isolation in order to exclude any un- 
controlled influence of in vitro (de)differentiation. 

The stimulatory effect of PTH peptides on collagen 
types II and X expression is not restricted to mRNA levels 
and monolayer conditions; identical results were obtained 
at protein level with human costal chondrocytes cultured 
in agarose suspension. Thus, it is likely that the apparent 
conflict between our data and those published by Iwamoto 
et al. (21, 22) result from different chondrocyte culture sys- 
tems and reflect the biologically relevant sensitivity of F r H  
effects to modulation by growth factors present in serum. 
Analysis of serum factors that modify the PTH effect would 
help in the understanding of the complex regulation of col- 
lagen metabolism during endochondral bone formation. 

In this study a new effector domain for chondrocytes 
was localized in the COOH-terminal region of PTH (amino 
acid residues 52-84), which exerts a selective effect on col- 
lagen type II and X expression in growth plate chondro- 
cytes from the hypertrophic zone. Proliferating chondro- 
cytes did not respond to PTH peptides derived from the 
COOH terminus. It has been shown by Murray et al. (40) 
that cells differentiated towards the osteoblastic lineage 
(human osteosarcoma SaOS-2 cells) increase type I col- 
lagen mRNA levels in response to PTH (1-34), but not to 
PTH (53-84), although the COOH-terminal fragment stimu- 
lated expression of mRNA for osteocalcin, the vitamin D 
receptor and alkaline phosphatase in the same cells. This 
underlines the domain specificity and differentiation stage- 
dependency of the PTH action and supports the concept 
of a physiological role for PTH metabolites in the hor- 
monal control of matrix metabolism in the growth plate. In 
accordance with this hypothesis are results from in situ hy- 
bridization studies on fetal rat cartilage (32), showing 
strong PTH receptor gene expression in a distinct zone of 
maturing chondrocytes immediately above the layers of 
hypertrophic cartilage. Moreover, by light microscope au- 
toradiography, Barling and Bibby (5) demonstrated [3H]PTH 
binding to hypertrophic chondrocytes; a histological study 
from 1943 revealed hypertrophy, calcification, and prema- 
ture closure of the growth plate induced by intraperitoneal 
administration of PTH to growing mice (50). In an organ 

culture system of mandibular explants, the COOH-termi- 
nal fragment PTH 53-84 exerted a profound change of 
morphology in the zone of hypertrophic cartilage (51). 

In this respect our results suggest that one important 
facet of PTH action is the stimulation of collagen type X 
gene expression in the hypertrophic zone of the epiphysis. 
Moreover, modulation of  collagen metabolism could be a 
critical event in calcification of growth plate cartilage since 
recent data (27, 28, 29) indicate that the interaction of col- 
lagen type II and X with the matrix vesicles in the growth 
plate activate Ca 2÷ loading of these extracellular micro- 
structures, which are considered the initiation sites of min- 
eral deposition in cartilage. 

Another aspect of the role of PTH in cartilage mineral- 
ization is closely related to our finding that PTH metabo- 
lites are capable of inducing a rise in intracellular free Ca 2÷ 
in chondrocytes from the hypertrophic zone. Matrix vesicles 
are formed in chondrocytes by budding from the cytoplas- 
matic membrane (3, 19) leaving the possibility open that 
they retain the chondrocytic PTH receptors in their cell 
membrane. For mineralization of cartilage, it remains to 
be elucidated whether the matrix vesicles still respond to 
PTH fragments after deposition in the extracellular matrix 
by increasing the intravesicular Ca 2+ concentration. 

It is not yet clear how the COOH-terminal part of PTH 
is recognized by the hypertrophic chondrocytes, and why 
the proliferating chondrocytes remain unresponsive to 
COOH-terminal PTH fragments. PTH and PTH-related 
peptide (PTHrP) bind to a common heptahelical G-pro- 
tein coupled receptor molecule (24, 47). Since this classical 
PTH receptor has a widespread tissue distribution, recep- 
tor heterogeneity as a consequence of alternative splicing 
of the intron-rich PTH receptor gene (23, 31) is an attrac- 
tive hypothesis for explanation of the observed heteroge- 
neous PTH responses in the chondrocyte. However, direct 
proof for the existence of such receptor isoforms in carti- 
lage is lacking. A more ligand selective isoform of the 
PTH/PTHrP receptor has been identified and character- 
ized for its unresponsiveness to FI'H-related peptide 
(PTHrP), but this PTH 2 receptor seems to be particularly 
abundant in pancreas and brain and also recognizes the 
amino-terminal fragment of PTH (54). However, more re- 
cently a novel PTH receptor with specificity for the car- 
boxyl-terminal region of PTH has been characterized in 
rat osteosarcoma and parathyroid cell lines (20). More- 
over, in osteosarcoma cell lines (ROS 17/2.8), this COOH- 
terminal receptor seemed to be upregulated in response to 
PTH stimuli (FFH 1-34) that are mediated via the common 
PTH/PTHrP receptor, implying its role in C-receptor ex- 
pression (20). 

Thus, the possibility remains that one of the above men- 
tioned receptors may be involved in the stimulatory effect 
of the COOH-terminal part of PTH. Receptor isoforms 
could also explain the differential effects of central vs 
COOH-terminal PTH peptides on the induction of Ca 2÷ 
signaling in distinct cell subsets. Alternatively, Civitelli et 
al. (11) suggested a nonuniform distribution of functional 
receptors over the cell surface to explain similar heteroge- 
neous calcium responses to PTH in the osteogenic sarcoma 
cell line UMR 106. A conformational change in a common 
receptor molecule could also account for the selective ac- 
tion of the different functional domains of PTH on distinct 
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subpopulations of chondrocytes. Irrespective of the receptor 
molecule involved, our results suggest that two distinct 
functional domains on the PTH molecule can exert differ- 
ent hormonal effects on collagen II and X metabolism by 
epiphyseal chondrocytes, depending on the differentiation 
stage of the cells. 
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