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    Chapter 2   

 Penetratin Story: An Overview 

           Edmond     Dupont    ,     Alain     Prochiantz    , and     Alain     Joliot    

    Abstract 

   Cell-penetrating peptides are short, often hydrophilic peptides that get access to the intracellular milieu. 
They have aroused great interest both in academic and applied research. First, cellular internalization of 
CPPs often involves the crossing of a biological membrane (plasma or vesicular), thus challenging the 
view of the non-permeability of these structures to large hydrophilic molecules. Secondly, CPPs can 
drive the internalization of hydrophilic cargoes into cells, a rate-limiting step in the development of 
many therapeutic substances. Interestingly, the two most used CPPs, TAT and penetratin peptides, are 
derived from natural proteins, HIV Tat and Antennapedia homeoprotein, respectively. The identifi ca-
tion of the penetratin peptide, summarized in this review, is intimately linked to the study of its parental 
natural protein.  
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1      Introduction 

 It is extremely striking that the transgression of the dogma of 
membrane impermeability to hydrophilic molecules at the origin, 
20 years ago, of the cell-permeable peptide fi eld stems from the 
study of two unrelated transcriptional regulators, HIV Tat protein 
and Antennapedia homeoprotein. In both cases, the necessity to 
verify their purely intracellular activity had motivated the addition 
of these proteins in the extracellular medium, with unexpected 
results that suggested internalization by cultured cells. These 
results have led to the development of the fi rst cell-permeable pep-
tides, to expression strategies based on direct protein delivery—
instead of classical nucleic acid transfection—and to the search for 
the underlying biological function of protein transduction.  
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2    The Origin of an Unexpected Observation 

 In 1988, the capture of HIV-TAT by cells and its transport to the 
nucleus were described [ 1 ,  2 ]. At the same time, our laboratory 
was trying to correlate neuronal shape and position and in this 
position/shape context had started to investigate the function of 
homeoprotein transcription factors. 

 In the mid-1980s, we observed that brain neurons in culture 
adopt different polarity patterns depending on the origin of the 
astrocytes on which they were plated [ 3 ,  4 ]. It was particularly 
striking that dendrites would only develop when neurons and 
astrocytes were derived from the same structure. This allowed us to 
establish a theoretical link between developmental morphogenetic 
programs and positional information. At the time, the homeopro-
tein family of transcription factors that link organ shape to their 
positional information was discovered in Drosophila. We asked 
whether morphogenetic programs acting at the multicellular levels 
might also act at the single-cell level, on neuronal shape. 

 Homeoproteins are defi ned by nature of their DNA-binding 
domain, the homeodomain. This domain is highly conserved 
across homeoproteins and species, and is composed of three 
α-helices, the third helix being more particularly dedicated to the 
recognition of the DNA target site [ 5 ]. We wanted to test our 
hypothesis by injecting a homeodomain within live neurons. The 
logic was that the injected homeodomain would gain access to the 
nucleus and displace endogenous homeoproteins away from their 
cognate sites, thus revealing their morphological function at the 
single-cell level. We used the homeodomain of Antennapedia for 
practical reasons and on the basis of the strong sequence conser-
vation between homeodomains. To analyze the role of homeo-
proteins in neuronal morphogenesis we developed a protocol 
aimed at antagonizing transcriptional activity of endogenous 
homeoproteins. This was achieved through the mechanical inter-
nalization of FITC-labeled homeodomains into live post-mitotic 
neurons [ 6 – 8 ]. The addition of exogenous Drosophila 
Antennapedia homeodomain (AntpHD) induced strong neurite 
outgrowth as expected that was attributed to a competition 
between the homeodomain and endogenous homeoproteins for 
their binding sites [ 8 ]. But the surprise was total when adding the 
homeodomain into the culture medium, for a control, we observed 
the same phenotype. This suggested either that the effect of the 
injected homeodomain was due to its leakage outside of the 
cells—an artifact—or that the homeodomain was internalized. We 
verifi ed the latter possibility and observed, much to our surprise, 
that the 60-amino acid-long polypeptide was captured by the cells 
and addressed to their nuclei [ 8 ].  
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3    Homeodomain Translocation 

 In an attempt to analyze the neurite-promoting function of the 
homeodomain and its mechanism of action, two different point 
mutations affecting the specifi city of protein/DNA interactions 
(AntpHD 50A) or the structure of the homeodomain (AntpHD 
48S) were introduced [ 9 – 11 ]. The DNA-binding capacity of the 
three mutants is either decreased (AntpHD 50A) or completely 
abolished (AntpHD 48S) and the biological activity (neurite out-
growth stimulation) is lost in all cases [ 9 – 11 ]. Most importantly, 
translocation into live cells is lost only in the AntpHD 48S mutant, 
into which a single-serine residue replaces three amino acids (tryp-
tophan 48, phenylalanine 49, and glutamine 50). Tryptophan 48 
(Trp 48) and phenylalanine 49 (Phe 49) are conserved in all home-
odomains, and important for the homeodomain structure [ 10 ]. 

 This observation was so unexpected and disturbing that we 
decided to identify the mechanism involved in homeodomain cap-
ture. Interestingly, the intracellular distribution showing uniform 
cytoplasmic staining and nuclear accumulation was at odd with 
endocytosis. Indeed, uptake was observed at 4 °C, with the same 
uniform cytoplasmic staining. To preclude that this diffusion was 
due to AntpHD redistribution following fi xation, the same experi-
ments done with an FITC-tagged homeodomain, on live cells, and 
with the help of confocal microscopy gave identical results [ 8 ]. 
Finally, it was verifi ed that the AntpHD was retrieved, intact, from 
the cells at both temperature, demonstrating very limited degrada-
tion [ 12 ].  

4    The Penetratin Peptide 

 The results with AntpHD 48S suggested the presence of a cell 
translocation sequence in the third helix. The 16 amino acids of 
the helix (amino acids 43–58 of the homeodomain) were synthe-
sized and internalization into live cells was followed thanks to an 
N-terminal biotin [ 13 ]. Shorter versions of the same peptide, with 
N-ter or C-ter deletions, are not internalized suggesting that this 
sequence, thereafter penetratin, is necessary and suffi cient for 
internalization. 

 Similarly to AntpHD, penetratin can be internalized by an 
energy-independent mechanism at both 4 and 37 °C and has access 
to the cytoplasm and nucleus from which it is retrieved without 
apparent degradation [ 13 ]. Penetratin’s high content in basic 
amino acids is reminding of TAT and oligoarginine peptides. In 
contrast, a unique feature of penetratin is the presence of hydro-
phobic residues, in particular tryptophans, which are critical to the 
translocation process [ 13 ]. Indeed, penetratin and other basic 
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PTDs differ in their cellular behaviors, even in the same experi-
mental setup [ 14 – 17 ]. More strikingly, signifi cant differences have 
been reported between penetratin-like sequence issues from differ-
ent homeoproteins, despite extensive conservation of this motif 
among homeoproteins [ 18 ,  19 ]. Although biophysical and bio-
logical studies have greatly helped to our comprehension of pene-
tratin behavior, a full understanding of its mechanism of 
translocation is still in wait. 

   Because penetratin composed of  D -amino acids ( D -penetratin) and 
an  inverso  form of the peptide are internalized as effi ciently as pen-
etratin [ 20 ], it was concluded that a chiral membrane receptor 
(usually a protein) is not required for cellular translocation. On the 
other hand, the specifi c ability of penetratin to form multimers in 
the presence of ionic detergents has led to a close examination of 
penetratin/lipid interactions [ 13 ]. Biophysical studies have estab-
lished that penetratin preferentially interacts with anionic phos-
pholipids mainly through electrostatic interactions, followed by 
limited peptide insertion into the bilayer [ 21 – 23 ]. Although the 
fi rst studies strongly suggested that penetratin binds to the lipid 
headgroups, a situation not in favor of direct translocation across 
pure lipid bilayers, a more recent diversifi cation of the experimen-
tal models and techniques has revealed a different picture [ 24 ,  25 ]. 
Penetratin actually crosses pure lipid bilayers, either in the presence 
of an applied transmembrane pH gradient [ 26 ,  27 ] or in response 
to a self-generated potential resulting from asymmetric peptide 
aggregation at one side of the bilayer (electroporation-like mecha-
nism) [ 21 ]. The spontaneous insertion of non-aggregated penetra-
tin in the inner leafl et of lipid bilayers was also reported using a 
novel solid-state NMR technique [ 28 ]. In these experimental set-
ups, the behavior of penetratin greatly depends on the lipid com-
position of the vesicles   . The absence of penetratin translocation 
reported by other groups could refl ect an unfavorable lipid compo-
sition [ 29 – 31 ]. 

 It must be kept in mind that penetratin/lipid interaction is a 
reciprocal process affecting both partners. Penetratin adopts a ran-
dom coil structure in an aqueous environment but becomes struc-
tured in the presence of anionic phospholipids. At a low peptide/
lipid ratio (1/325), the peptide adopts an α-helical conformation 
[ 13 ,  32 – 35 ]. At a high peptide/lipid ratio (1/10), the peptide 
forms antiparallel β-sheets [ 23 ,  35 ,  36 ]. Conversely, penetratin 
alters the organization of lipid bilayers and the orientation of lipid 
acyl chains is modifi ed upon the deep insertion of penetratin into 
membrane bicelles [ 37 ]. When applied on a brain lipid mixture 
preparation, penetratin induces the formation of hexagonal phases 
[ 33 ]. We have proposed that this transient remodeling of lipid orga-
nization induced by penetratin places the peptide in a pseudo- 
hydrophilic environment and allows its transfer from the extracellular 
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medium to the cytoplasm of the cell. Other perturbations of the 
lipid bilayer upon penetratin addition have been reported, which 
can account for the translocation process. Penetratin induces a neg-
ative curvature of the lipid bilayer of giant unilamellar vesicles that 
contains liquid disordered domains [ 38 ] and has been shown to 
stimulate a membrane repair response, following the transient per-
turbation of plasma membrane integrity [ 39 ].  

   Mutation analysis has confi rmed the contribution of both hydro-
phobic and electrostatic properties to penetratin translocation. 
Mutation of basic residues favors peptide insertion in the acyl 
chains but destabilizes the bilayer [ 40 ]. A similar situation is 
observed upon addition of fl uorescent probes to penetratin, which 
increases its hydrophobicity [ 41 ], and induces a transient destabi-
lization of the plasma membrane in live cells demonstrated by the 
uptake of a cell-impermeant DNA dye and the appearance of phos-
phatidylserine at the cell surface [ 42 ]. Taken together many argu-
ments suggest that a subtle balance between hydrophobic and 
electrostatic properties of penetratin is required for its transloca-
tion. In fact, even minimal modifi cations, such as substitution of 
the two Trp residues by two Phe residues, modify peptide/lipid 
interactions and impair translocation in live cells [ 13 ,  37 ,  41 ,  43 ]. 
By contrast neither peptide helicity nor amphipathicity seems to be 
required for peptide internalization [ 20 ]. Indeed, increasing the 
amphipathicity of penetratin by mutations increases the toxicity of 
the peptide rather than its translocation effi ciency [ 44 ]. 

 A common feature of basic CPPs, including penetratin, is their 
strong electrostatic interaction with the complex carbohydrates 
that decorate the cell surface, likely preceding the interaction with 
the lipid bilayer. It was shown that the presence of Trp residues 
also modulates this very early step along the internalization pro-
cess and consequently impacts on the internalization pathway 
used [ 45 ].  

   Recent studies on the mechanism of internalization of penetratin 
in live cells have revealed a more complex picture than previously 
thought, and concluded to a predominant endocytic uptake and 
vesicular localization of this peptide [ 14 ,  15 ]. This proposal is at 
odd with a direct translocation process demonstrated by several 
internalization protocols, in particular at 4 °C, and biophysical 
studies. In fact there is no reason to exclude that penetratin can be 
captured by endocytosis depending on cell type and tagging proce-
dure. It remains that, in contrast with Tat, endocytosis is not a 
prerequisite for penetratin transfer into the cytoplasm and nucleus. 
Among modifi ers of penetratin uptake are the highly negatively 
charged carbohydrates that surround most cells, in particular 
 glycosaminoglycans (GAGs) [ 46 ]. The complex sugars could 
restrict penetratin access to the membrane, promote penetratin 
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aggregation [ 47 ], and induce endocytosis, with the possibility (or 
not) that the peptide crosses the bilayer later, once within endo-
somes. Indeed, penetratin escape from artifi cial vesicles driven by a 
proton gradient has been reported, supporting this mechanism 
[ 48 ]. Moreover, the non-endocytic component of penetratin 
internalization (i.e., observed at 4 °C) is poorly affected by the 
absence of GAGs, while the endocytic component dramatically 
decreases [ 46 ]. 

 The diversity of mechanisms has also been illustrated by several 
studies [ 40 ,  49 ,  50 ]. For example, the intracellular distribution of 
internalized penetratin greatly differs between Hela and MC57 cell 
lines, or the macropinocytosis inhibitor ethylisopropylamiloride 
(EIPA) decreases penetratin uptake added at high (50 μM) but not 
low (10 μM) concentration [ 17 ,  51 ].   

5    The First Applications 

 Soon after the observation of homeodomain translocation, we have 
demonstrated the use of this process for the effi cient cell delivery 
and biological activity of hydrophilic molecules was published. Both 
antisense oligonucleotides (against the β-amyloid precursor pro-
tein) and protein domains (C-terminus domain of rab3a) were effi -
ciently internalized by cells in culture upon fusion to AntpHD [ 52 , 
 53 ]. The fi rst in vivo application of AntpHD- mediated vectoriza-
tion was the induction of T-cell responses by a peptide derived from 
the HLA-cw3 cytotoxic T cell epitope [ 54 ]. It appeared very quickly 
that the 16-amino acid-long peptide penetratin could substitute 
advantageously for AntpHD, both for oligopeptide and oligonucle-
otide delivery [ 55 ,  56 ]. Since this time, this vectorization strategy 
has expanded dramatically [ 57 ], and proven to be highly versatile 
toward the nature of the transported cargo (from small drugs to 
nanoparticles) and the biological context (both ex vivo and in vivo). 
Most importantly, a large panel of peptides has been characterized 
on the basis of their cell- penetrating behavior although only some 
of them have been validated with a biological cargo. 

 In physiological situations, many of the successful applications 
of penetratin-driven delivery rely on the topical or targeted deliv-
ery of the compound. Improvement of the bio-distribution and 
bioavailability will consist in one of the major challenges for the 
therapeutical development of this promising strategy.  

6    Conclusion 

 More than 10 years after the initial reports, one can ask whether 
CPP-based cellular delivery has reached maturity. The naïve view 
of a universal magic CPP bullet that delivers any hydrophilic 
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molecule into the cell has been replaced by a more complex 
 picture, where for instance the nature of the transported cargo, its 
mode of linkage to the CPP, or the targeted intracellular compart-
ment have to be considered. Our knowledge in this fi eld still 
remains largely empirical, rather than predictive, and often relies 
on the setting up of dedicated experimental protocols, such as 
those described in this book.     
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