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Abstract Stefin B (cystatin B) is an inhibitor of lysosomal cys-
teine cathepsins and does not inhibit cathepsin D, E (aspartic) or
cathepsin G (serine) proteinases. In this study, we have investi-
gated apoptosis triggered by camptothecin, staurosporin (STS),
and anti-CD95 monoclonal antibody in the thymocytes from
the stefin B-deficient mice and wild-type mice. We have observed
increased sensibility to STS-induced apoptosis in the thymocytes
of stefin B-deficient mice. Pretreatment of cells with pan-caspase
inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone completely
inhibited phosphatidylserine externalization and caspase activa-
tion, while treatment with inhibitor of calpains- and papain-like
cathepsins (2S,3S)-trans-epoxysuccinyl-leucylamido-3-methyl-
butane ethyl ester did not prevent caspase activation nor
phosphatidylserine exposure. We conclude that sensitization to
apoptosis induced by STS in thymocytes of stefin B-deficient
and wild-type mice is not dependent on cathepsin inhibition by
stefin B.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Apoptosis; Cathepsin; Caspase; Inhibitor;
Progressive myoclonus epilepsy; Thymocyte
1. Introduction

Programmed cell death (apoptosis) is essential to many bio-

logical processes in multicellular organisms, including embry-

onic development, immune responses, tissue homeostasis and

normal cell turnover [1]. Proteolytic activity plays an impor-

tant role in apoptosis and caspases appear to be essential for

the execution of apoptotic process [2]. However, other cysteine

proteases distinct from caspases have been suggested to be in-

volved in apoptosis [3,4]. Cathepsins have traditionally been

viewed as lysosomal mediators of protein turnover, however,

recent findings have extended their role in other physiological

processes including apoptosis [5,6]. The cysteine cathepsins B
Abbreviations: Ac-DEVD-AMC, acetyl-Asp-Glu-Val-Asp-AMC;
AFC, 7-amino-4-trifluoromethyl coumarin; AMC, 7-amino-4-methyl
coumarin; CPT, camptothecin; DMSO, dimethylsulfoxide; PS, phos-
phatidylserine; STS, staurosporin; z-VAD-fmk, benzyloxycarbonyl-
Val-Ala-Asp-fmk; fmk, fluoromethyl ketone; E-64d, (2S,3S)-trans-
epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester
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and L and the aspartyl cathepsin D, participate in both cas-

pase-dependent and caspase-independent apoptosis induced

by several stimuli, including death receptors of the TNFR fam-

ily, B cell receptors, camptothecin (CPT), and bile salt oxidants

[7–12].

Stefin B (also called cystatin B) belongs to cystatin family

of endogenous cysteine protease inhibitors [13]. Mutations

in the gene encoding stefin B are responsible for the primary

defect in Unverricht–Lundborg disease (EPM1) [14–16]. Ste-

fin B-deficient mice, produced by targeted disruption of the

mouse stefin B gene, display a phenotype similar to the hu-

man disease with progressive ataxia and myoclonic seizures

[17]. The mice exhibit apoptosis of cerebellar granule cells

and have increased expression of apoptosis and glial activa-

tion genes [18]. Although, stefin B has long been known to

inhibit in vitro papain-like cathepsins by tight and reversible

binding, the physiological function of stefin B in the molecu-

lar pathogenesis of the disease remains unknown. In vitro ste-

fin B binds tightly to cathepsins H, L, and S, and less tightly

to cathepsin B [13]. Houseweart et al. [19] showed that the

removal of cathepsin B from cystatin B-deficient mice greatly

reduced the neuronal apoptosis, but did not rescue the ataxia

and seizure phenotypes and concluded that besides cathepsin

B there are other factors involved. Recent studies show that

cathepsins cleave the pro-apoptotic Bcl-2 family member

Bid, thereby activating it and allowing it to induce the mito-

chondrial release of cytochrome c and subsequent apoptosis

[20,21]. At least in stefin B-deficient mice Bid signaling is

not essential for apoptosis [22]. In contrast to T cell lines,

PS exposure in primary T cells undergoing apoptosis by stau-

rosporin (STS), etoposide, or interleukin 2 withdrawal is cas-

pase-independent, while anti-CD95 triggered apoptosis is

caspase-dependent [23].

We wanted to investigate if cell death and PS exposure in

thymocytes of stefin B-deficient mice is cathepsin- or cas-

pase-dependent. Therefore, stefin B-deficient thymocytes and

thymocytes from wild-type mice were treated with CPT,

STS, and anti-CD95 antibody. Thymocytes from stefin B-

deficient mice exerted a markedly increased response, when

they were exposed to STS, compared to thymocytes from

wild-type mice. Preincubation of cells with (2S,3S)-trans-

epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester (E-

64d) did not prevent apoptosis, while caspase inhibitor

z-VAD-fmk completely prevented apoptosis in all cases

tested. In thymocytes isolated from wild-type mice and of ste-

fin B-deficient mice, apoptosis is cathepsin-independent and

caspase-dependent.
blished by Elsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Materials
Horseradish peroxidase-conjugated goat-anti-rabbit IgG and goat-

anti-mouseantibodies, fetal calf serum(FCS),wereobtained fromSigma
(USA). The caspase substrate acetyl-Asp-Glu-Val-Asp-7-amino-4-tri-
fluorometyl coumarin (Ac-DEVD-AFC) was purchased from Bachem
(BachemAG, Switzerland). All other chemicalswere of analytical grade.
2.2. Mice
Stefin B (cystatin B)-deficient mice mice were created as described

previously [17]. Stefin B-deficient mice bred on a C57BL/6 background
were kindly provided by Dr. R.M. Myers, Stanford University (USA)
and bred in our local colony, where background was changed on Balb/
c. All mice were genotyped by PCR as previously described [17].
2.3. Cell preparations and cell culture
Freshly prepared thymocytes from thymus glands of 6- to 7-week-

old mice were plated in DMEM, 10% FCS, and 2 mM LL-glutamine
in 24-well culture plates at 5 · 106 cells/well. The cell-permeable inhib-
itors E-64d (Peptide Institute, Osaka, Japan), or z-VAD-fmk (Bachem
AG, Switzerland) were added in adequate concentrations in dimethyl-
sulfoxide (DMSO) 1 h prior to induction of apoptosis. The corre-
sponding volume of DMSO was added to the control cultures. To
induce apoptosis, cells were treated with CPT (Sigma, USA) (1 lM),
STS (Sigma) (1 lM) or with anti-CD95 mAb Jo-2 (Pharmingen,
USA) (500 ng/ml) for 4, 8, 12 and 18 h.
Human Jurkat T cell line was purchased from American Type Cul-

ture Collection (Manassas, VA, USA). Cells were grown in RPMI
1640 medium supplemented with 10% FCS, 2 mM glutamine, and
1000 U/ml of penicillin–streptomycin. Cells were treated with CPT
(1 lM), STS (1 lM) or with anti-CD95 mAb CH11 (Pharmingen)
(1 lg/ml).
Preparation of cell lysates and immunoprecipitates. For protein anal-

ysis, cells were lysed with radioimmunoprecipitation assay (RIPA) buf-
fer (50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1% deoxycholate, 1%
Triton X-100, and 5 mM EDTA). Cell lysates were clarified by centri-
fugation at 12000 rpm for 10 min at 4 �C. Protein concentration of the
supernatants were determined by Bradford assay, and equivalent
amounts of protein from cell lysates were used for immunoprecipita-
tion or analyzed directly by SDS–polyacrylamide gel electrophoresis
(SDS–PAGE) followed by Western blotting. For immunoprecipita-
tions RACK-1 mAb (Pharmingen) was added to lysates and allowed
to rock at 4 �C for 2 h. Then, 5 lg of anti-mouse IgM Ab and 50 ll
of protein A–Sepharose beads (Amersham Pharmacia Biotech, Swe-
den) were added to the lysates, which were allowed to rock for another
2 h at 4 �C. Immunoprecipitates were washed twice in fresh cold RIPA
buffer. Washed immunoprecipitates and total cell lysates were dena-
tured by boiling after the addition of one-sixth of the volume of 6·
reducing SDS–PAGE sample buffer (360 mM Tris, pH 6.6, 12%
SDS, 600 mM DTT, 60% glycerol, and 0.6% bromophenol blue) and
analyzed by immunoblotting.
Western blot. Proteins were separated on 15% SDS–PAGE and elec-

trophoretically transferred to nitrocellulose filters in 192 mM glycine,
25 mM Tris, and 20% (v/v) methanol. The membrane was blocked
by incubating in phosphate buffered saline pH 7.2 containing 0.5%
(v/v) Tween-20 (PBST) containing 5% (wt/vol) nonfat dry milk and
sequentially incubated with primary Ab: rabbit anti-human caspase-3
Ab or mouse anti-human caspase-7 mAb F5/1 (Gregorc, U., Dober-
šek, A., Salvesen, G., Turk V., Turk, B., Kopitar-Jerala, N. accepted
to Immunology Lett.) and with anti-b-actin antibody (Sigma–Adrich,
USA) in PBST for 1–2 h with shaking. Anti-RACK-1 immunoprecip-
itates were developed with anti-cystatin B (stefin B) Ab (Biogenesis,
Poole, UK). The filters were incubated with horseradish peroxidase-
conjugated secondary anti-mouse or anti-rabbit Ab (depending on
the primary Ab). Membranes were then washed with PBST and devel-
oped by the enhanced chemiluminescence method according to the
manufacturer�s instructions (Amersham Pharmacia Biotech).
Fig. 1. Dose-dependent effect of STS on DEVD-ase activity.
Thymocytes from Balb/c mice were treated with increasing concentra-
tions of STS for 8 h. DEVD–AFC cleavage activity was determined as
described in Section 2.
2.4. Measurement of DEVD-ase activity
For measurement of caspase activities, treated cells were washed in

PBS and pellets were lysed for 15 min at 4 �C in caspase lysis buffer
(100 mM HEPES, 200 mM NaCl, 0.2% (w/v) CHAPS (3-[(3-cholami-
dopropyl) dimethylammonio]-1-propanesulfonate), 20% (w/v) sucrose,
2 mM EDTA, and 20 mM DTT, pH 7.0). After 15 min centrifugation
at 12,000 · g and 4 �C, supernatant were collected and assayed for pro-
tein concentration by Bradford method (Bio-Rad Laboratories, USA).
Caspase-3 and -7 activities were estimated on 100 lg of proteins by
adding caspase buffer to the final volume of 90 ll into the 96-well plate.
Following 10 min incubation at 37 �C, Ac-DEVD-AFC (Ac-Asp-Glu-
Val-Asp-7-amido-4-methyl coumarin) was added to a final concentra-
tion of 100 lM and DEVD-ase activity was measured continuously in
an LS50B fluorimeter with plate reader attachment (Perkin–Elmer,
USA) at excitation and emission wavelengths of 400 and 505 nm,
respectively.

2.5. Flow cytometry
Phosphatidylserine exposure was measured by labelling thymocytes

with annexin V-PE and 7-amino-actinomycin D (7-AAD) (Becton
Dickinson, USA) according to the manufacturer�s instructions. Cells
were then subjected to FACS analysis using a FACScalibur flow
cytometer (Becton Dickinson) and CellQuest software.
3. Results

3.1. Stefin B-deficient thymocytes are more sensitive to protein

kinase inhibitor staurosporin-induced apoptosis

As a first approach to assess the role of stefin B in extrinsic

or intrinsic apoptotic signalling pathway the kinetics of cas-

pase activation and PS externalization were compared in thy-

mocytes from wild-type mice with thymocytes from stefin

B-deficient mice treated with anti-CD95 mAb, STS, and

CPT. Caspase activation was first studied by fluorimetric assay

using the caspase-3 and -7 specific substrate Ac-DEVD-afc.

The dose-dependent effect of STS on DEVD-ase activity is

shown in Fig. 1. In thymocytes of stefin B-deficient mice as

well as wild-type thymocytes the time course of cell death in-

duced by anti-CD95 mAb was more rapid (4–8 h) than with

CPT or STS (Fig. 2A–C). Examination of the time-dependent

activation of DEVD-ase induced by STS revealed that DEVD-

ase activity began to increase approximately 4 h after STS

treatment and reached maximum after 8–12 h. Addition of

STS caused a significantly faster caspase activation in the thy-

mocytes of stefin B-deficient mice in comparison to wild-type

mice (Fig. 2B). In the case of anti-CD95 mAb antibody and

CPT the differences between DEVD-ase activities in stefin



Fig. 3. PS surface exposure in thymocytes isolated from wild-type
(WT) and stefin B-deficient (KO) mice undergoing apoptosis by
different stimuli. Thymocytes were treated with CPT (1 lM), STS
(1 lM), or anti-CD95 mAb (0.5 lg/ml) for 6 h. At this time cells were
stained with annexin V-FITC and 7AAD. The percentages of annexin
V�/7AAD�, annexin V+/7AAD�, and annexin V+/7AAD+ are indi-
cated on each dot plot. Results are from a typical experiment of three
performed that showed similar percentages.
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Fig. 2. Kinetic analysis of caspase activation associated with apoptosis
triggered by different stimuli in thymocytes from wild-type mice and
stefin B-deficient mice. Thymocytes from wild-type mice (h) and stefin
B-deficient mice (n) were treated with (A) anti-CD95 mAb (0.5 lg/ml);
(B) STS (1 lM); (C) or CPT (1 lM). At the indicated time, DEVD–
AFC cleavage activity was determined as described in Section 2. The
results are means ± S.D. of at least three independent experiments
performed in duplicate.
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B-deficient and wild-type thymocytes were not as pronounced

as in the case of STS (Fig. 2A and C).

The kinetics of PS externalization was observed by cytoflu-

orometric analysis using annexin V-7AAD, respectively. Upon

induction of apoptosis with STS, thymocytes from stefin B-

deficient mice showed increased PS exposure in comparison

to thymoctes from wild-type mice (Fig. 3).

Together these results show a concomitant caspase activa-

tion and PS exposure after STS, CPT, anti-CD95 mAb-in-

duced apoptosis. Such kinetics suggest that in thymocytes PS

exposure is dependent on caspase activation after STS, CPT,

or anti-CD95 mAb-induced apoptosis. Extracts of apoptotic

cells were tested with Western blots for the caspase-3 and -7

processing. In the extracts from the thymocytes of stefin B-

deficient and wild-type mice both caspase-3 and -7 were pres-

ent in proteolytically processed activated form (Fig. 4).

Processing of caspase-3 in untreated thymocytes is due to the

spontaneous apoptosis in thymocytes in primary culture,

after 8 h.
3.2. Stefin B and RACK-1 do not co immunoprecipitate in the

thymocytes of Balb/c mice

We tested if the increased sesnsitivity of stefin B-deficient

thymocytes is to STS-induced apoptosis is due to interactions

of stefin B with RACK-1, since co-immunoprecipitation of the

two proteins was described in rat cerebellar cell extracts [35].

With specific antibodies we were able to detect RACK-1 as

well as stefin B in thymocyte lysates of Balb/c mice using Wes-

tern blot, but we could not detect the interaction of the two

proteins with co-immunoprecipitation (data not shown).

3.3. Cysteine proteinase inhibitor E-64d does not prevent

apoptosis in stefin B-deficient nor in wild-type thymocytes

To determine whether cysteine endopeptidases (lysosomal

papain-like cathepsins or calpains) have an active role within

apoptotic pathways in thymocytes we used the previously

characterized cell-permeable inhibitor E-64d. Our previous re-

sults on Jurkat T cells show that preincubation with E-64d

even in concentrations as low as 5 lM was sufficient to com-

pletely block any cathepsin activity [24]. Here we present evi-

dence that inhibition of cathepsin activity did not protect



Fig. 5. Effects of cathepsin inhibitor E-64d on PS exposure in
thymocytes isolated from from wild-type (WT) and stefin B-deficient
(KO) mice undergoing apoptosis by different stimuli. Thymocytes were
incubated in the presence of E-64d (25 lM) for 1 h before treatment
with CPT (1 lM), STS (1 lM), or anti-CD95 mAb (0.5 lg/ml) for 6 h.
At this time cells were stained with annexin V-PE and 7AAD. The
percentages of annexin V�/7AAD�, annexin V+/7AAD�, and annexin
V+/7AAD+ are indicated on each dot plot. Results are from a typical
experiment of three performed that showed similar percentages.

Fig. 4. Caspase-7 and -3 activation during CD95-, STS-, and CPT-
induced apoptosis in thymocytes. Cells from wild-type (lines 1, 3, 5, 7)
and stefin B-deficient mice (2,4,6,8) were left untreated (1,2) treated
with STS (3, 4), CPT (5, 6), or anti-CD95 mAb (7, 8) for 8 h. After
washing with PBS, cells were lysed as described in Section 2. An equal
amount of proteins was loaded and separated on 15% SDS–PAGE,
followed by Western blotting with the anti-caspase-3 rabbit polyclonal
and sera anti-caspase-7 mAb F5/1. Membranes were stripped and
redeveloped with anti-b-actin Ab. Results are from a typical experi-
ment of two performed that showed similar results.
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primary culture of thymocytes from apoptosis. The effect of E-

64d on the anti-CD95 mAb, STS and CPT-induced apoptosis

was examined by flow cytometry. Pretreatment of thymocytes

with up to 25 lM of E-64d for 1 h prior to induction of apop-

tosis had no effect on apoptosis determined by flow cytometry

(Fig. 5). DEVD-ase activity after induction of apoptosis in

cells pretreated with E-64d and untreated cells was also com-

parable (data not shown).

3.4. Apoptosis is prevented by caspase inhibitor z-VAD-fmk in

both stefin B-deficient and wild-type thymocytes

To assess the role of caspases in apoptosis induced in thymo-

cytes isolated from stefin B-deficient and wild-type mice we

examined the effect of the pan-caspase inhibitor Z-VAD-fmk

on PS exposure. z-VAD-fmk was found to inhibit also cathep-

sins in intact cells and in our experiments we used z-VAD-fmk

at concentrations that do not significantly inhibit the cathep-

sins (25 lM) [24]. Cells preincubated with z-VAD-fmk inhibi-

tor for 1 h and treated with anti-CD95 mAb, STS, and CPT

were harvested for analysis of DEVD-ase activity and PS expo-

sure. Preincubation of thymocytes with 25 lM z-VAD-fmk

prevented not only DEVD-ase activity (data not shown) in

thymocytes isolated from stefin B-deficient and wild-type mice,

but also PS exposure (Fig. 6), indicating that caspase activa-

tion is required for apoptosis progression in this model.

DEVD-ase activity and PS exposure was low also in negative

controls indicating that also spontaneous apoptosis in thymo-
cytes in primary culture was prevented with z-VAD-fmk. Jur-

kat T cells were treated with the same apoptosis-inducing

stimuli, anti-CD95 mAb, STS, or CPT in the presence or the

absence of the pan-caspase inhibitor z-VAD-fmk or E-64d.

In Jurkat z-VAD-fmk inhibited PS exposure induced by anti-

CD95 mAb, as well as with CPT and STS while E-64d did

not inhibit caspase activation nor PS exposure induced by

anti-CD95 mAb (data not shown). Our results on induction

of apoptosis in Jurkat cell line are in accordance with previ-

ously published results [23].
4. Discussion

In this study, we investigated the effect of the lack of stefin B

in apoptotic pathways in thymocytes. In T cells and thymo-

cytes, caspases are not the only proteases that are able to in-

duce apoptosis, cathepsins and calpains could also

participate [25–27]. In thymocytes of stefin B deficient mice

as well as in thymocytes isolated from wild-type mice the time

course of cell death induced by anti-CD95 mAb was more



Fig. 6. Effects of caspase inhibitor z-VAD-fmk on PS exposure in
thymocytes from wild-type (WT) and stefin B-deficient (KO) mice
undergoing apoptosis by different stimuli. Thymocytes were incubated
in the presence of z-VAD-fmk (25 lM) for 1 h before treatment with
CPT (1 lM), STS (1 lM), or anti-CD95 mAb (0.5 lg/ml) for 6 h. At
this time cells were stained with annexin V-PE and 7AAD. The
percentages of annexin V�/7AAD�, annexin V+/7AAD�, and annexin
V+/7AAD+ are indicated on each dot plot. Results are from a typical
experiment of three performed that showed similar percentages.
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rapid (4–8 h) than with CPT or STS (Fig. 2). We observed

comparable increase in caspase activity and cells surface PS

exposure in stefin B-deficient and wild-type mice in apoptosis

induced by anti-CD95 mAb and concluded that stefin B is

not involved in extrinsic apoptotic pathway (Fig. 2A and

Fig. 3). We tested two reagents that act through intrinsic path-

way: in the apoptosis induced by CPT, topoisomerase inhibitor

which is also known to cause activation of NF-jB, there was

not a major difference between stefin B-deficient and wild-type

thymocytes (Fig. 2C) NF-jB suppresses apoptosis through

induction of multiple target genes coding for inhibitors of

the extrinsic or intrinsic signalling pathways that regulate

apoptosis [28]. Recently, it has been shown that NF-jB pro-

tects cells from TNF-a-induced apoptosis by the up regulation

of serine protease inhibitor 2A (Spi2A), also an inhibitor of

cathepsin B [29]. The most pronounced difference between time

course of apoptosis in thymocytes of stefin B-deficient and

wild-type mice we found with STS, a broad-specificity protein

kinase inhibitor. Although STS inhibits several protein ki-

nases, it shows the highest affinity to the protein kinase C

(PKC) isoenzymes [30]. Despite the common use of STS as

an inducer of apoptosis, the mechanism by which STS initiates
apoptosis still not clear. It is apparent that STS induces apop-

tosis through the mitochondrial pathway [31]. Cells from mice

lacking both BAX and BAK are completely resistant to STS as

well as several other apoptotic stimuli that act through disrup-

tion of mitochondrial function [32]. STS induces mitochon-

drial outer membrane permeabilization, which is followed by

the release of cytochrome c and the downstream activation

of caspase-9 and -3 [31,33]. In STS induced apoptosis cas-

pase-3 to feeds back on permeabilized mitochondria and cleave

the 75-kDa subunit (NDUFS1) of respiratory complex I,

which leads to a disruption of electron transport, mitochon-

drial transmembrane potential (Dwm) and the production of

reactive oxygen species (ROS) [34]. The increased sensitivity

of stefin B-deficient thymocytes towards STS-induced apopto-

sis could be at least partially due to the ROS.

Di Giaimo et al. [35] using yeast two hybrid system, identi-

fied five proteins interacting with stefin B in rat cerebella, none

of which was cathepsin. We find particularly interesting inter-

action of stefin B with protein kinase C receptor (RACK-1)

which was also confirmed by co-immunoprecipitation of two

proteins in rat cerebellar cell extracts, and in immunofluores-

cence analysis of differentiated cultured primary cerebellar

granule cells. RACK-1 was originally identified and cloned

from a rat brain cDNA expression library as a protein that

specifically bound activated PKCb.
We tested the possibility that stefin B interacts with RACK-1

and in this way interferes with PKC signalling in the cells. With

specific antibodies wewere able to detect RACK-1 as well as ste-

fin B in thymocyte lysates of Balb/c mice usingWestern blot, but

we could not confirm the interaction of the two proteins with co-

immunoprecipitation. The interaction of stefin B with RACK-1

is probably tissue specific, characteristic only to cerebellum.

Why stefin B-deficient thymocytes are more sensitive to STS-in-

duced apoptosis is still not clear, but at least in murine thymo-

cytes, it is not due to stefin B–RACK-1 interactions.

Apoptotic pathways consist of a cascade of signalling proteins

before the final decision ismade.We cannot exclude the possibil-

ity that the increased sensitivity of stefin B-deficient thymocytes

towards STS-induced apoptosis is due to STS inhibition of PKC

and lack of phosphorylation of signalling proteins.

Two independent studies identified cathepsin B as a key

player in microglial neuronal cell death [36,37]. In WEHI-S fi-

bro sarcoma cells, TNF-a induced an increase in cytosolic

cathepsin B activity followed by death with apoptotic features.

Apoptosis was enhanced by low concentrations of pan-caspase

inhibitors z-VAD-fmk. Contrary to caspase inhibitors, a panel

of pharmacological cathepsin B inhibitors, the endogenous

cathepsin inhibitor stefin A (cystatin A) as well as antisense-

mediated depletion of cathepsin B rescued WEHI-S cells from

apoptosis [7]. Since stefin B is inhibitor of cysteine proteinases

and does not inhibit cathepsin D, E (aspartic) or cathepsin G

(serine) proteinases we examined the effect of E-64d on apop-

tosis in stefin B deficient thymocytes. In our experiments inhi-

bition of cathepsin activity with E-64d did not rescue

thymocytes isolated from stefin B-deficient mice nor wild-type

mice from apoptosis with any apoptotic inducers tested. Cal-

pains, calcium-dependent cysteine proteases, which are also

inhibited by E-64d, are required for polymorphonuclear neu-

trophil apoptosis, as well as for glucocorticoid-induced apop-

tosis thymocytes [4,38]. But the lack of inhibition of

apoptosis with E-64d, suggested that in our test system cal-

pains were not involved. It can be therefore suggested that
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the sensitization of thymocytes to STS-induced apoptosis is

not related to lack of inhibition of cathepsins by stefin B.

The inhibition of caspase activity with general caspase inhib-

itor z-VAD-fmk completely prevented apoptosis in thymocytes

isolated from stefin B-deficient mice as well as wild-type mice

(Fig. 6). In our test system of apoptosis induced in murine thy-

mocytes PS exposure is connected to caspase activation, while

in primary T cells, PS exposure was not affected by caspase

inhibitors [23].

As a conclusion, we can say that in thymocytes isolated from

wild-type mice and stefin B-deficient mice, apoptosis is cathep-

sin-independent and caspase-dependent, while the stefin B defi-

ciency affects predominantly apoptotic process which is

triggered by STS by a currently unknown mechanism.
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